TT Bluescreens

Design	ТуреТуре
Release Date	March 13, 2015
Font Update	January 17, 2023
Publisher	ТуреТуре
Styles	37 styles
File Formats	otf, ttf, woff, eot, svg

About TT Bluescreens

TT Bluescreens is a geometric sans serif with narrow proportions. The font has a memorable character, while remaining neutral, so it can be used in various design projects.

The range of possibilities of the updated TT Bluescreens has become much wider!

Condensed styles with narrowed proportions have been added. The classic styles of TT Bluescreens are universal and suitable for setting both in headings and in text arrays. Condensed styles are intended for nonstandard design solutions. In small sizes, they are perceived as if having a texture, thanks to which they can become part of packaging or poster design. In large size they look extraordinary, but they are highly readable and convey information well. Variable font now changes along 3 axes: weight, width and slant. Even more options for those who love variety.

The character set of TT Bluescreens was expanded, and additional extended Cyrillic and Latin characters were added.

Expanded character set. Each style has 874 characters. This is 253 characters more than it there were in the previous version. New currency signs, arrows, punctuation and fractions were added.

Number of OpenType features increased from 18 to 31! The font has become even more functional and convenient thanks to a large number of ligatures, stylistic alternatives and localizations. The quality of the contours has become even higher, diacritics were improved.

The updated TT Bluescreens is suitable for the design of covers and posters, it will look aesthetically pleasing in packaging design. It can be used in the design of titles and disclaimers. Condensed styles are preferably used in large size.

The TT Bluescreens font has 37 styles: 9 upright and 9 italics of standard width, 9 upright and 9 italics in Condensed, 1 variable style. Each style contains 874 characters. The font has 31 OpenType features, including ligatures, stylistic sets, and localizations.

123ABC

TT Bluescreens Medium 300 pt

Font family

TT Bluescreens is available in 9 weights (Thin, ExtraLight, Light, Regular, Meduim, DemiBold, Bold, ExtraBold, and Black) and 9 matching italics of standard width.

Weights

TT Bluescreens Thin TT Bluescreens ExtraLight TT Bluescreens Light TT Bluescreens Regular TT Bluescreens Medium TT Bluescreens DemiBold TT Bluescreens Bold TT Bluescreens Bold TT Bluescreens Black Italics

IT Bluescreens Thin Italic IT Bluescreens ExtraLight Italic IT Bluescreens Light Italic IT Bluescreens Italic IT Bluescreens Medium Italic IT Bluescreens DemiBold Italic IT Bluescreens Bold Italic IT Bluescreens ExtraBold Italic IT Bluescreens Black Italic

An organic light-emitting diode (OLED) is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound that emits light in response to an electric current. This organic layer is situated between two electrodes; typically, at least one of these electrodes is transparent.

TT Bluescreens Thin 16 pt

OLEDs are used to create digital displays in devices such as television screens, computer monitors, portable systems such as smartphones, handheld game consoles and PDAs. A major area of research is the development of white OLED devices for use in solid-state lighting applications.

TT Bluescreens ExtraLight 16 pt

Pope's group reported in 1965 that in the absence of an external electric field, the electroluminescence in anthracene crystals is caused by the recombination of a thermalized electron and hole, and that the conducting level of anthracene is higher in energy than the exciton energy level.

TT Bluescreens Light 16 pt

André Bernanose and co-workers at the Nancy-Université made the first observations of electroluminescence in organic materials in the early 1950s. They applied high alternating voltages in air to materials such as acridine orange, either deposited on or dissolved in cellulose or cellophane thin films.

TT Bluescreens Thin Italic 16 pt

In 1960 Martin Pope and some of his co-workers at New York University developed ohmic dark-injecting electrode contacts to organic crystals. They further described the necessary energetic requirements (work functions) for hole and electron injecting electrode contacts.

TT Bluescreens ExtraLight Italic 16 pt

In 1965, W. Helfrich and W. G. Schneider of the National Research Council produced double injection recombination electroluminescence for the first time in an anthracene single crystal using hole and electron injecting electrodes, the forerunner of modern double-injection devices.

TT Bluescreens Light Italic 16 pt

Roger Partridge made the first observation of electroluminescence from polymer films at the National Physical Laboratory in the United Kingdom. The device consisted of a film of poly (N-vinylcarbazole) up to 2.2 micrometers thick located between two charge injecting electrodes.

TT Bluescreens Regular 16 pt

Research into polymer electroluminescence culminated in 1990 with J. H. Burroughes et al. at the Cavendish Laboratory at Cambridge University, UK, reporting a highefficiency green light-emitting polymer-based device using 100 nm thick films of poly(p-phenylene vinylene).

TT Bluescreens Medium 16 pt

Originally, the most basic polymer OLEDs consisted of a single organic layer. One example was the first light-emitting device synthesised by J. H. Burroughes et al., which involved a single layer of poly(p-phenylene vinylene).

TT Bluescreens DemiBold 16 pt

This device used a two-layer structure with separate hole transporting and electron transporting layers such that recombination and light emission occurred in the middle of the organic layer; this resulted in a reduction in operating voltage and improvements in efficiency.

TT Bluescreens Italic 16 pt

The organic molecules are electrically conductive as a result of delocalization of pi electrons caused by conjugation over part or all of the molecule. These materials have conductivity levels ranging from insulators to conductors, and are therefore considered organic semiconductors.

TT Bluescreens Medium Italic 16 pt

Many modern OLEDs incorporate a simple bilayer structure, consisting of a conductive layer and an emissive layer. More recent developments in OLED architecture improves quantum efficiency (up to 19%) by using a graded heterojunction.

TT Bluescreens DemiBold Italic 16 pt

This latter process may also be described as the injection of electron holes into the HOMO. Electrostatic forces bring the electrons and the holes towards each other and they recombine forming an exciton, a bound state of the electron and hole.

TT Bluescreens Bold 16 pt

During operation, a voltage is applied across the OLED such that the anode is positive with respect to the cathode. Anodes are picked based upon the quality of their optical transparency, electrical conductivity, and chemical stability.

TT Bluescreens ExtraBold 16 pt

The graded heterojunction architecture combines the benefits of both conventional architectures by improving charge injection while simultaneously balancing charge transport within the emissive region.

TT Bluescreens Black 16 pt

Statistically three triplet excitons will be formed for each singlet exciton. Decay from triplet states (phosphorescence) is spin forbidden, increasing the timescale of the transition and limiting the internal efficiency of fluorescent devices.

TT Bluescreens Bold Italic 16 pt

A typical conductive layer may consist of PEDOT:PSS as the HOMO level of this material generally lies between the work function of ITO and the HOMO of other commonly used polymers, reducing the energy barriers for hole injection.

TT Bluescreens ExtraBold Italic 16 pt

Indium tin oxide (ITO) is commonly used as the anode material. It is transparent to visible light and has a high work function which promotes injection of holes into the HOMO level of the organic layer.

TT Bluescreens Black Italic 16 pt

Condensed font family

TT Bluescreens Condensed consists of 18 faces: 9 uprights (Thin, ExtraLight, Light, Regular, Meduim, DemiBold, Bold, ExtraBold, and Black) and 9 italics. Condensed styles are preferably used in large size.

Weights

DemiBold Bold ExtraBold Black

Thi Extralight Light Regular Medium

Italics

DemiBold Bold ExtraBold Black

Supported languages

TT Bluescreens supports more than 240 languages including Western, Central, Northern European languages and most of cyrillic.

Albanian	Filipino	Macedonian	Spanish
Basque	Finnish	Moldavian	Swahili
Belarusian	French	Norwegian	Swedish
Bosnian	Gaelic	Polish	Turkish
Breton	German	Portuguese	Turkmen (Latin)
Corsican	Hungarian	Romanian	Ukrainian
Croatian	lcelandic	Russian	Zulu
Czech	Indonesian	Sámi (Lule,	and others
Danish	lrish	Southern)	
English	Italian	Serbian	
Estonian	Latvian	Slovak	
Faroese	Lithuanian	Slovenian	

Дисплеи на органических светодиодах встраиваются в смартфоны, планшеты, ЭЛЕКТРОННЫЕ КНИГИ, цифровые фотоаппараты, в OLED-телевизоры.

TT Bluescreens Regular 80 pt Russian 9

Languages

Sammenlignet med LCD-skærme med baggrundsbelysning, er strømforbruget for en OLED-skærm mindre end halvdelen. Baggrundsbelysningen på en LCD-skærm lyser konstant, og varierende mængder lys i forskellige farver slippes gennem. LCD-skærme er ikke i stand til at vise den rene farve sort , da noget lys altid slipper gennem. OLED-skærme, producerer lyset i hvert enkelt pixel, ogi hver sine farver, således kontrasten (forholdet mellem de lyse og mørke farver) bliver uendelig, hvilket betyder at der ikke er noget lystab.

Danish

lako industrijom televizora trenutno dominiraju uređaji koji koriste panele sa ekranima od tečnog kristala, poznatije pod imenom LCD paneli, OLED tehnologija takođe postaje sve zastupljenija i popularnija, te tako stiče velike šanse da u budućnosti sa trona skine stariju, "rivalsku" tehnologiju izrade ekrana. Ideja da se razviju OLED ekrani došla je posmatranjem svitaca, jer su ovi insekti u stanju da stvore svetlost uprkos činjenici da — očigledno — na sebi nemaju nikakve električne uređaje sa tradicionalnim lampama. Puede ser usado en todo tipo de aplicaciones: televisores, monitores, pantallas de dispositivos portátiles (teléfonos móviles, PDA, reproductores de audio...), indicadores de información o de aviso, etc., con formatos que bajo cualquier diseño irán desde unas dimensiones pequeñas (2 pulgadas) hasta enormes tamaños (equivalentes a los que se están consiguiendo con LCD). Mediante los OLED también se pueden crear grandes o pequeños carteles de publicidad, así como fuentes de luz para iluminar espacios generales.

Spanish

OLEDin valmistuksessa käytetään höyrystystekniikkaa, mikä vaatii tyhjiön käyttöä. Ensin lasisubstraatille tehdään indiumtinaoksidista anodi, minkä jälkeen höyrystetään yleensä ainakin kaksi kerrosta pienimolekyylisiä orgaanisia yhdisteitä (organometalleja). Orgaanisten kerrosten kokonaispaksuus on 100–150 nm. Niiden päälle tehdään katodi jostain metallista. Kuviointi hoidetaan käyttämällä "varjomaskia" höyrystyksessä. Lisäämällä rakenteeseen erilaisia kerroksia saadaan OLEDin hyötysuhdetta paranettua.

Finn

Serbian

NF FAM łY RTŠ PO P • <u>O</u> N LAN ĢĘS F

TT Bluescreens Condensed ExtraBold 130 pt

Glyphs

Uppercase

Character Set

Lowercase	
Figures	
Cyrillic Uppercase	
Cyrillic Lowercase	-
Punctuation & Symbols	-
Extended Latin	-
	-
Extended Cyrillic	
Mathematical Symbols	
Fractions, Ordinals	-

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789

АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦ ЧШЩЪЫЬЭЮЯҐЃЌЄЅІЇЈЉЊЂЋЎЏ

абвгдеёжзийклмнопрстуфхц чшщъыьэюяґŕќєѕіїјљњђћўџ

!;?;«»<>.,:;'′,"″"..."'|¦---_\/()[]{}··* #§©®¶№™@&†‡°^ªº

ÀÁĂĂÂÄĀĄÅŔĂÆÆĆČÇĈĊĎĐĐĖÉĚĒĖĒĔĘĔĠĞĢĜĠĞĤĦŇĦÌIÎĪIJĬIJĬIJ ĶĸĹĽĻĿŁŃŃŇŅÑŊĠŎÓÔÖŐŌŌŎØØŒŶÞŔŘŖŚŠŜŞŞŤŢŢŦÙÚŬÛÜŰŪŬŲŮ ĐŨƏŴŴŴŴŹŶŶŸŶŶŹŹŻDZDŽDzDžIJIJŊŊàáăăâāāąåáãææćčçĉċďđ ðèéěëëeēĕęēġġġġġĥħňňıìſîïiīįĭĩijíIJĵķĸĹľļŀŀm'nňņñŋßòóôöőō õŏøǿœþþŕřŗśšŝşşťţţŧùúŭûüűūŭųůŧũəẃŵŵẁżýŷÿŷýźžżdzdžIJŋj

ĂÄÆFFÈĔҖӁӜҘӞЍӢӤӏҚҠҢӦŎѲQӘҪҪӮӰӲҮҰҲҶӴҺӸӸӬѠ ӑӓӕӻӻѐӗҗӂӝҙӟѝӣӥӀқҡӊӧŏѳqәҫҫӯӱӳүұҳҷӵһӹы҃ӭѡ

 $-+<>\leq \geq = \neq \sim \approx \neg \pm \times \div \cdot \cdot \mathbb{N}^{0} \ \# \ \% \ \% \ \mu$

 $1\!\!/_4\,1\!\!/_2\,3\!\!/_4\,1\!\!/_7\,1\!\!/_9\,1\!\!/_{10}\,1\!\!/_3\,2\!\!/_3\,1\!\!/_5\,2\!\!/_5\,3\!\!/_5\,4\!\!/_5\,1\!\!/_6\,5\!\!/_6\,1\!\!/_8\,3\!\!/_8\,5\!\!/_8\,7\!\!/_8\,^{0}a$

Glyphs

ТуреТуре

www.typetype.org

Ş ş Ț ț IJ ij ÍÍ íí ĿL ŀI ĿL i F F Ç ç

Currency Arrows Standard Ligatures Numerators. Denominators Superscripts, Scientific Inferiors **Proportional Figures** Tabular Figures Proportional Oldstyle Tabular Oldstyle Case Sensitive Stylistic Alternates White Circled Numbers Black Circled Numbers Localization

Character Set ₿¢\$€₴₺₽₹£₸₮₩¥f¤ $\leftarrow \uparrow \rightarrow \downarrow \leftrightarrow \diamondsuit \land \land \land \lor \lor \uparrow \downarrow \downarrow^\uparrow \backsim \checkmark$ ffiffjfflffifjfl H ^{0 1 2 3 4 5 6 7 8 9} H _{0 1 2 3 4 5 6 7 8 9} ${\tt H}^{{\scriptstyle 0}{\scriptstyle 1}{\scriptstyle 2}{\scriptstyle 3}{\scriptstyle 4}{\scriptstyle 5}{\scriptstyle 6}{\scriptstyle 7}{\scriptstyle 8}{\scriptstyle 9}}\,{\tt H}_{{\scriptstyle 0}{\scriptstyle 1}{\scriptstyle 2}{\scriptstyle 3}{\scriptstyle 4}{\scriptstyle 5}{\scriptstyle 6}{\scriptstyle 7}{\scriptstyle 8}{\scriptstyle 9}}$ 0123456789 0123456789 0123456789 0123456789 H[](){}ii≪»<>---··@ß IÌÍÎĨĨĨĬŢĬIJĨaàdâāäåāăąăģaăal(ļĽŀŀIJflfflyýÿŷyyÿÿÿŷŲQIJIJ́IJĴŊIJ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Basic characters

ABCDEFGHIJKLMN **OPQRSTUVWXYZ** abcdefghijklmn opqrstuvwxyz 0123456789

TT Bluescreens Medium 110 pt

TT Bluescreens Medium 42 pt

TT Bluescreens Medium 32 pt Efficient OLEDs using small molecules were first developed by Ching W. Tang et al. at Eastman Kodak. The term OLED traditionally refers specifically to this type of device, though the term SM-OLED is in use.

Molecules commonly used in OLEDs include organometallic chelates (for example Alq3, used in the organic light-emitting device reported by Tang et al.), fluorescent and phosphorescent dyes and conjugated dendrimers.

TT Bluescreens Medium 24 pt

TT Bluescreens Medium 18 pt

TT Bluescreens Medium 12 pt

TT Bluescreens Medium 8 pt The production of small molecule devices and displays usually involves thermal evaporation in a vacuum. This makes the production process more expensive and of limited use for large-area devices, than other processing techniques.

Researchers report luminescence from a single polymer molecule, representing the smallest possible organic light-emitting diode (OLED) device. Scientists will be able to optimize substances to produce more powerful light emissions. Finally, this work is a first step towards making molecule-sized components that combine electronic and optical properties.

Polymer light-emitting diodes (PLED, P-OLED), also light-emitting polymers (LEP), involve an electroluminescent conductive polymer that emits light when connected to an external voltage. They are used as a thin film for full-spectrum colour displays. Polymer OLEDs are quite efficient and require a relatively small amount of power for the amount of light produced. Vacuum deposition is not a suitable method for forming thin films of polymers. However, polymers can be processed in solution, and spin coating is a common method of depositing thin polymer films.

This method is more suited to forming large-area films than thermal evaporation. No vacuum is required, and the emissive materials can also be applied on the substrate by a technique derived from commercial inkjet printing. However, as the application of subsequent layers tends to dissolve those already present, formation of multilayer structures is difficult with these methods. The metal cathode may still need to be deposited by thermal evaporation in vacuum. An alternative method to vacuum deposition is to deposit a Langmuir-Blodgett film. Typical polymers used in pleaded displays include derivatives of poly(o-phenylene vinylene) and polyfluorene.

TT Bluescreens Condensed Medium 42 pt

TT Bluescreens Condensed Medium 32 pt An electronic visual display, informally a screen, is a display device for presentation of images, text, or video transmitted electronically, without producing a permanent record. Electronic visual displays include television sets, computer monitors, and digital signage. These are the technologies used to create displays in use today.

The display in modern monitors is typically an LCD with LED backlight, having by the 2010s replaced CCFL backlit LCDs. Before the mid-2000s,most monitors used a CRT. Monitors are connected to the computer via DisplayPort, HDMI, USB-C, DVI, VGA, or other proprietary connectors and signals. Originally, computer monitors were used for data processing while television sets were used for video.

OpenType features	Deactivated	
Tabular Figures	0123456789	
Tabular Oldstyle	0123456789	
Proportional Oldstyle	0123456789	
Numerators	H 0 1 2 3 4 5 6 7 8 9	
Denominators	H 0 1 2 3 4 5 6 7 8 9	
Superscripts	H 0123456789	
Scientific Inferiors	H 0 1 2 3 4 5 6 7 8 9	
Fractions	1/2 1/4 1/3	
Ordinals	2 a o	
Case Sensitive	({[H]})	
Stylistic Alternates	a y Q J	
White Circled Numbers	12345	
Black Circled Numbers	12345	
Standard Ligatures	ff fi fl ffi fl fj ffj fl ffl	
Localization	ŞşŢţĺJ íj	

0123456789		
0123456789		
0123456789		
0123456789		
0123456789		
0123456789		
H ₀₁₂₃₄₅₆₇₈₉		
1/2 1/4 3/4		
2 ^{a o}		
({[H]})		
ayIlQJ		
12345		
$\mathfrak{f}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{l}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{h}\mathfrak{f}\mathfrak{h}\mathfrak{h}\mathfrak{h}\mathfrak{h}\mathfrak{h}\mathfrak{h}\mathfrak{h}\mathfrak{h}\mathfrak{h}h$		
ŞşŢţŰŰ		

Activated

ТуреТуре

Stylistic alternates

TT Bluescreens font family has a number of sets of stylistic alternatives, which offers alternative glyphs for latin 'I, J, Q, a, I, y' and cyrillic «a, y» when it's turned on.

Default characters

l will share my future plans with Quincy & John.

Stylistic alternates

I will share my future plans with Quincy & John.

Case sensitive

Case sensitive feature shifts various punctuation marks up to a position that works better with all-capital sequences or sets of lining figures.

Default characters

Case sensitive

@ « Б» **01-02**

Glyph composition

To minimize the number of glyph alternates, it is sometimes desired to decompose a character into two glyphs. Additionally, it may be preferable to compose two characters into a single glyph for better glyph processing.

Proportional oldstyle

12 - 12

Tabular figures

Tabular oldstyle

12 - 12

The company is leading the world of OLED industry, generating \$100.2 million out of the total \$475 million revenues in the global OLED market in 2006. As of 2006, it held more than 600 American patents and more than 2800 international patents.

This OLED featured the highest resolution at the time, of 6.22 million pixels. This was exceeded in January 2008, when Samsung showcased the world's largest and thinnest OLED TV at the time, at 31 inches (78 cm) and 4.3 mm.

The drive circuit was formed by low-temperature polysilicon TFTs. Also, low-molecular organic EL materials were employed. The pixel count of the display is **480** \times **272**. The contrast ratio is **100**,000:1, and the luminance is **200** cd/m². The colour reproduction range is **100**% of the NTSC standard.

About TypeType

TypeType company was founded in 2013 by Ivan Gladkikh, a type designer with a 10-year experience and Alexander Kudryavtsev an experienced manager. In the past 5 years we've released more than 40 font families, and the company has turned into a type foundry with a harmonious team.

Our mission is to create and distribute only carefully drawn, thoroughly tested, and perfectly optimized typefaces which are available to a wide range of customers.

Our team unites people who represent different countries and continents. Thanks to such cultural diversity, our projects are truly unique and global.

Contact us

TypeType Foundry

commercial@typetype.org www.typetype.org

Copyright © TypeType Foundry 2013-2023. All rights reserved. For more information about our fonts please visit TypeType Foundry website www.typetype.org