

2024

The inspiration for TT Fors was drawn from the research n geometric sans serifs of the 20th century and their contribution to the visual environment of that period. Although the typeface's core is historical, we aimed to create an advanced and highly adaptable font for any modern task, from branding and packaging design to implementation into interfaces and pps. The font's name refers to its versatility and the multiude of purposes it serves for

TT Fors stands out for its glyphs and forms contrasting in width, closely resembling the basic geometric shapes (cirle, triangle, and rectangle). In addition, the forms of rounded characters approach a perfect circle, and the rest have narrower proportions. The sufficiently tall lowercase charac ers enhance the font's functionality even more. TT Fors can Iso be used in both large and very small point sizes because f its precise geometric shapes and uniform construction rules.

While crafting the display version of the typeface, It was essential to keep the font's stylish and elegant character and add new meanings to it. That's why the forms and proportions of characters in TT Fors Display remain recognizable and acquire high-contrast glyphs as a special trait. The typesetting is consistent, and the terminals are a little more closed than those of the main subfamily, which emphasizes the entire typeface's personality. Another important detail of this font is thin punctuation marks, certain typographical symbols, and diacritics. We also implemented several alternate characters with thin inner diagonals (M, W) and a set with thin descending elements in Cyrillic alphabets to enhance the expressive ness of the typesetting. However, the display font style has calmer alternates for some letters, typographical symbols, and other marks.
 TypeType's range of versatile sans serifs that already includes TT Norm Pro TT of versatile sans serifs that already includes TT Norms Pro, TT Commons Pro, TT Hoves Pro, TT Interphases Pro, and TT Firs Neue.

TT Fors includes:

$\rightarrow 32$ font styles: 9 roman and 9 italic in the Text subfamily, 6 weights and 6 italic styles in the Display subfamily, and also 2 variable fonts for both subfamilies,
$\rightarrow 1044$ glyphs in each font style;
$\rightarrow 35$ OpenType features;
$\rightarrow 180+$ languages support

AaBbCcDdEeFfGgHhli JjKkLIMmNnOoPpQqRr SsTtUuVvWwXxYyZz 0123456789 @\#\$\%\&*!? абвгдеёжз + lătiñ

AaBbCcDdEeFfGgHhli JjKkLIMmNnOoPpOqRr SsTtUuVvWwXxYyZz 0123456789 @\#S\%\&*!? абвгдеёжз + lătịñ

1	Thin	Italic		ExtraLight	Italic
2	ExtraLight	Italic	2	Light	Italic
3	Light	Italic	3	Regular	Italic
4	Regular	Italic	4	Medium	Italic
5	Medium	Italic	5	DemiBold	Italic
6	DemiBold	Italic	6	Bold	Italic
7	Bold	Italic			
8	ExtraBold	Italic			
9	Black	Italic			
囚0		\そ®\ロ®			

Euclidean Geometry

Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems. The Elements begins with plane geometry.

Much of the Elements states results of what are now called alge bra and number theory, explained in geometrical language. For more than two thousand years, the adjective "Euclidean" was unnecessary because Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that theorems proved from them were deemed absolutely true, and thus no other sorts of geometry were possible.

Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Albert Einstein's theory of general relativity is that physical space itself is not Euclidean, and Euclidean space is a good approximation for it only over short distances (relative to the strength of the gravitational field). Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axi oms describing basic properties of geometric objects such as points and lines, to propositions about those objects.

Elements

Discrete differential

There are 13 books in the Elements.

The Elements is mainly a systematization of earlier knowledge.

Euclid gives five postulates (axioms) for plane geometry, stated in terms of constructions (as translated by Thomas Heath)

TT Fors Display
Regular

AaBb AaBb

T Fors includes a variable font with two axes of variation weight and slant. TT Fors Display also includes a variable font with two axes of variation: weight and slant. To use the variable font with 2 variable axes on Mac you will need MacOS 10.14 or higher. An important clarification - not all programs support variable technologies yet, you can check the support status here: v-fonts.com/support/.

variable

$\begin{array}{ll}0 & \\ 0 & \text { SLANT }\end{array}$

TT Fors
Variable
variable

12 PT

Euclidean Geometry is constructive. Postuates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature. that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than many modern axiomatic systems such as set theory, which often assert the existence of objects without

Points are customarily named using capital letters of the alphabet. Othe igures, such as lines, triangles, or circles, re named by listing a sufficient number of points to pick them out unambiguously from the relevant figure, e.g., triangle ABC would typically be a triangle with vertices at points A, B, and C. Angles whose sum is a right angle are called complementary. Complementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the right angle. The number of rays in between the two original rays is infinite

Abstract

24 PT To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false.

saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will have. Though nearly all modern mathematicians consider nonconstructive methods just as sound as constructive ones.

Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normally be measured in degrees or radians. Modern school textbooks often define separate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discussing a ray as an object that extends
to infinity in one direction, would normaly use locutions such as "if the line is ex tended to a sufficient length", although he occasionally referred to "infinite lines A "line" in Euclid could be either straight or curved, and he used the more specific term "straight line" when necessary. The pons asinorum (bridge of asses) states that in isosceles triangles the angles at the base equal one another, and, if the equal straight lines are produced further, then the angles under the base equal one another

24 PT

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false.

12 PT

Euclidean Geometry is constructive. Postulates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than many modern axiomatic systems such as set theory, which often assert the existence of objects
without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will have. Though nearly all modern mathematicians consider nonconstructive methods just as sound as constructive ones

Points are customarily named using capital letters of the alphabet. Other figures, such as lines, triangles, or circles, are named by listing a sufficient number f points to pick them out unambiguousyrom the relevant figure, e.g., triangle ABC would typically be a triangle with vertices at points A, B, and C. Angles whose sum is a right angle are called omplementary. Complementary angles are formed when a ray shares the same ertex and is pointed in a direction that is in between the two original rays that orm the right angle. The number of rays in between the two original rays is
infinite. Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normally be measured in degree or radians. Modern school textbooks often define separate figures called nes (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discussing a ray as an object that
extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length" although he occasionally referred to "infinite lines". A "line" in Euclid could be either straight or curved, and he used the more specific term "straight line when necessary. The pons asinorum (bridge of asses) states that in isosceles triangles the angles at the base equal one another, and, if the equal straigh lines are produced further, then the angles under the base equal one another

24 PT

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false.

12 PT

Euclidean Geometry is constructive. Postulates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclid ean geometry is more concrete than many modern axiomatic systems such as set theory, which often assert the existence of objects
without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will have. Though nearly all modern mathematicians consider nonconstructive methods just as sound as constructive ones.
original rays is infinite. Angles whose sum is a straight angle are supplemen tary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normally be measured in degrees or radians, Modern school textbooks often define separate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than
discussing a ray as an object that ex tends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally referred to "infinite lines". A "line" in Euclid could be either straight or curved, and he used the more specific term straight line when necessary. The pons asinorum (bridge of asses) states that in isosceles triangles the angles at the base equal one another, and, if the equal straight lines are produced further, then the an gles under the base equal one another

Abstract

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false.

12 PT

Euclidean Geometry is constructive. Postulates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than many modern axiomatic systems such as set theory, which often assert the existence
of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will have. Though nearly all modern mathematicians consider nonconstructive methods just as sound as constructive ones.

Points are customarily named using capital letters of the alphabet. Other figures, such as lines, triangles, or circles, are named by listing a sufficient number of points to pick them out unambiguously from the relevant figure, e.g., triangle ABC would typically be a riangle with vertices at points A, B, and C. Angles whose sum is a right angle are called complementary. Comple mentary angles are formed when a ray shares the same vertex and is pointed a direction that is in between the two original rays that form the right angle. The number of rays in between the two
original rays is infinite. Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normaily be measured in degrees or radians. Modern school textbooks often define sep arate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discuss
ing a ray as an object that extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally referred to "infinite lines". A line" in Euclid could be either straight or curved, and he used the more specific term "straight line when necessary. The pons asinorum (bridge of asses) states that in isosceles triangles the angles at the base equal one another, and, if the equal straight lines are produced further, then the angles under the base equal one another.

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false.

12 PT

Euclidean Geometry is constructive. Postuates $1,2,3$, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straight edge. In this sense, Euclidean geometry is more concrete than many modern axiomatic systems such as set theory, which
often assert the existence of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will have. Though nearly all modern mathematicians consider nonconstructive methods just as
oints are customarily named using apital letters of the alphabet. Othe figures, such as lines, triangles, or circles, are named by listing a sufficient number of points to pick them out nambiguously from the relevant figure, e.g., triangle ABC would typically be a triangle with vertices at points A, B, and C. Angles whose sum is a right angle are called complementary. Complementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the right angle. The number
of rays in between the two origina rays is infinite. Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normally be measured in degrees or radians. Modern school textbooks often define separate figures called lines (infinite), rays (semi-infinite), and
line segments (of finite length). Euclid rather than discussing a ray as an object that extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally referred to "infinite lines". A "line" in Euclid could be eithe straight or curved, and he used the more specific term straight line when necessary. The pons asinorum (bridge of asses) states that in isosceles triangles the angles at the base equal one another, and, if the equal straight lines are produced further,

Abstract

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which

12PT

Euclidean Geometry is constructive. Postulates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than many modern axiomatic systems such as set
theory, which often assert the existence of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width but any real drawn line will have. Though nearly all modern mathematicians consid-

Points are customarily named using apital letters of the alphabet. Other figures, such as lines, triangles, or circles, are named by listing a suffi cient number of points to pick them out unambiguously from the relevant figure, e.g., triangle ABC would ypically be a triangle with vertices at points A, B, and C. Angles whose sum is a right angle are called com plementary. Complementary angle re formed when a ray shares the same vertex and is pointed in a direction that is in between the two riginal rays that form the right an
gle. The number of rays in between the two original rays is infinite. Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normally be measured in degrees or radians. Modern school textbooks often define separate figures called
lines (infinite), rays (semi-infinite), and line segments (of finite length) Euclid, rather than discussing a ray as an object that extends to infini ty in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally referred to infinite lines". A "line" in Euclid could be either straight or curved, and he used the more specific term "straigh line" when necessary. The pons asinorum (bridge of asses) states that in isosceles triangles the angles at the base equal one another, and,

Abstract

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true,

(12PT)

Euclidean Geometry is constructive. Postulates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than many modern axiomatic systems
such as set theory, which often assert the existence of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will have. Though nearly all
oints are customarily named using capital letters of the alphabet. Other figures, such as lines, riangles, or circles, are named by listing a sufficient number of points to pick them out unambiguusly from the relevant figure, e.g. triangle ABC would typically be a triangle with vertices at points A, B and C. Angles whose sum is a right angle are called complementary. Complementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original
rays that form the right angle. The number of rays in between the two original rays is infinite. Angles whose sum is a straight angle are supplementary. Supplementary an gles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straigh angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normally be measured in degrees or radian Modern school textbooks often
define separate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discussing a ray as an object that extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally referred to "infinite lines". A "line" in Euclid could be either straight or curved, and he used the more specific term "straight line" when necessary. The pons asinorum (bridge of asses) states that in isosceles triangles

> To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate

12 PT

Euclidean Geometry is constructive. Postulates 1, 2, 3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than many modern axiomat-
ic systems such as set theory, which often assert the existence of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will

9 PT

Points are customarily named using capital letters of the alphaet. Other figures, such as ines, triangles, or circles, are named by listing a sufficient number of points to pick them out unambig uously from the relevant figure, e.g., triangle ABC would typical y be a triangle with vertices at points A, B, and C. Angles whose sum is a right angle are called complementary. Complementary angles are formed when a ay shares the same vertex and is pointed in a direction that
is in between the two original rays that form the right angle. The number of rays in between the two original rays is infinite Angles whose sum is a straigh angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology angles would normally be meas-
ured in degrees or radians. Modern school textbooks often define separate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discussing a ray as an object that extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficien length", although he occasionally referred to "infinite lines". A "line" in Euclid could be either straight or curved, and he used the more specific term "straight line" when

Abstract

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel pos-

12 PT

Euclidean Geometry is constructive.

 Postulates 1, 2, 3, and 5 assert the ex istence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense, Euclidean geometry is more concrete than manymodern axiomatic systems such as set theory, which often assert the existence of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but

Points are customarily named using capital letters of the alphabet. Other figures, such as lines, triangles, or circles, are named by listing a sufficient number of points to pick them out unambiguousiy from the relevant figure, e.g., triangle ABC would typically be a triangle with vertices at points A, B, and C. Angles whose sum is a right angle are called complementary. Complementary angles are formed when a ay shares the same vertex and is pointed in a direction that
is in between the two original rays that form the right angle. The number of rays in between the two original rays is infinite. Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles
would normaily be measured in degrees or radians. Modern school textbooks often define separate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length). Euclid, rather than discussing a ray as an object that extends to infinity in one direction, would normally use locutions such as "if the line is extended to a sufficient length", although he occasionally referred to "infinite lines". A "line" in Euclid could be either straight or curved,

24 PT

To the ancients, the parallel postulate seemed less obvious than the others. It is now known that such a proof is impossible since one can construct consistent systems of geometry (obeying the other axioms) in which the parallel postulate is true, and others in which it is false.

12 PT

Euclidean Geometry is constructive. Postulates 1,2,3, and 5 assert the existence and uniqueness of certain geometric figures, and these assertions are of a constructive nature: that is, we are not only told that certain things exist, but are also given methods for creating them with no more than a compass and an unmarked straightedge. In this sense Euclidean geometry is more concrete than many modern axiomatic systems such as set theory, which often assert the existence
of objects without saying how to construct them, or even assert the existence of objects that cannot be constructed within the theory. Strictly speaking, the lines on paper are models of the objects defined within the formal system, rather than instances of those objects. For example, a Euclidean straight line has no width, but any real drawn line will have. Though nearly all modern mathematicians consider nonconstructive methods just as sound as constructive ones.

9 PT

Points are customarily named using capital letters of the alphabet. Othr figures, such as lines, triangles, or circles, are named by listing a sufficient number of points to pick them out unambiguously from the relevant figure, e.g., triangle $A B C$ would typical ly be a triangle with vertices at points A, B, and C. Angles whose sum is a right angle are called complementary Complementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the right angle. The number of
rays in between the two original rays is infinite. Angles whose sum is a straight angle are supplementary. Supplementary angles are formed when a ray shares the same vertex and is pointed in a direction that is in between the two original rays that form the straight angle (180 degree angle). The number of rays in between the two original rays is infinite. In modern terminology, angles would normally be measured in degrees or radians. Modern school textbooks often define separate figures called lines (infinite), rays (semi-infinite), and line segments (of finite length).

Euclid, rather than discussing a ray as an object that extends to infinity in one direction, would normally use locution such as "if the line is extended to a su ficient length," although he occasion ally referred to "infinite lines". A "ine in Euclid could be either straight or curved, and he used the more specific term straight line when necessary The pons asinorum (bridge of asses) states that in isosceles triangles the angles at the base equal one another, and, if the equal straight lines are pro duced further, then the angles under the base equal one another.

72 PT

 reme friangle のாதDe sలmEvelĩdean geometuvy凸のs \}wo fondomeగం

36 PT
Eలఆโİd reffers fo a pair Of － ■re equal respeckivelyy and งimilarly for angles．

Thales＇theo－ rem\＆Triangle angle sum

Euclidean geometry has two fundamental types of measurements：angle and distance．

36 PT
Euclid refers to a pair of lines， or a pair of planar or solid figures， as＂equal＂if their lengths，areas， or volumes are equal respectively， and similarly for angles．

TT Fors supports more than 180 languages including Northern, Western Central European languages, most of Cyrillic.

LATIN

Acehnese, Afar, Albanian+, Aleut (lat), Alsatian, Aragonese, Arumanian+,Asu, Aymara, Azerbaijani+, Banjar, Basque+, Belarusian (lat), Bemba, Bena, Betawi, Bislama+, Boholano+, Bosnian (lat), Breton+, Catalan+, Cebuano+, Chamorro+, Chichewa, Chiga, Colognian+, Cornish, Corsican+, Cree, Croatian, Czech+, Danish, Dutch+, Embu, English+, Esperanto, Estonian+, Faroese+, Fijian, Filipino+, Finnish, French, Frisian, Friulian+, Gaelic, Gagauz (lat), Galician+, Ganda, German+, Gusii, Haitian Creole, Hawaiian, Hiri Motu, Hungarian+, Icelandic+, llocano, Indonesian+, Innuaimun, Interlingua, Irish, Italian+, Javanese, Jola-Fonyi, Judaeo-Spanish, Kabuverdianu, Kalenjin, Karachay-Balkar (lat), Karaim (lat), Karakalpak (lat), Karelian, Kashubian, Kazakh (lat), Khasi, Kinyarwanda, Kirundi, Kongo, Kurdish (lat), Ladin, Latvian, Leonese, Lithuanian, Livvi-Karelian, Luba-Kasai, Ludic, Luganda+, Luo, Luxembourgish+, Luyia Machame, Makhuwa-Meetto, Makonde, Malagasy, Malay+, Maltese, Manx, Maori, Marshallese, Mauritian Creole, Minangkabau+, Moldavian (lat), Montenegrin (lat), Morisyen, Nahuatl, Nauruan, Ndebele, Nias, Norwegian, Nyankole, Occitan, Oromo, Palauan, Polish+, Portuguese+, Quechua+, Rheto-Romance, Rohingya, Romanian + , Romansh + , Rombo, Rundi, Rwa, Salar, Samburu, Samoan, Sango, Sangu, Sasak, Scots, Sena, Serbian (lat)+, Seychellois Creole, Shambala, Shona, Silesian, Slovak+, Slovenian+, Soga, Somali, Sorbian, Sotho+, Spanish+, Sundanese, Swahili, Swazi, Swedish+ Swiss German+, Tagalog+, Tahitian, Taita, Talysh (lat), Tatar+, Teso, Tetum, Tok Pisin, Tongan+, Tsakhur (Azerbaijan), Tsonga Tswana+, Turkish+, Turkmen (lat), Uyghur, Valencian+

Die euklidische Geometrie ist zunächst die uns vertraute, anschauliche Geometrie des Zweioder Dreidimensionalen. Der Begriff hat jedoch sehr verschiedene Aspekte. Benannt ist dieses mathematische Teilgebiet der Geometrie nach dem griechischen Mathematiker Euklid.

FRENCH

Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.

RUSSIAN

Евклидова геометрия (или элементарная геометрия) - геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.). Элементарная геометрия - геометрия, определяемая группой перемещений и группой подобия.

SPANISH

La geometría euclidiana es un sistema matemático atribuido al antiguo matemático griego Euclides, que describió en su libro de texto sobre geometría: Los Elementos. La geometría euclidiana, euclídea o parabólica es el estudio de las propiedades geométricas de los espacios euclídeos.

DANNISH

Euklidisk geometri er den klassiske geometri, hvor Euklids postulater, som er opstillet af den græske matematiker Euklid, er gældende. Euklid skrev omkring 300 f.Kr. sin bog Elementer, hvori han opstillede disse fem postulater og en lang række af sætninger og konstruktioner udledt af disse.

FINNISH

Euklidinen geometria on geometrian osa-alue, jolla tarkoitetaan yleensä tasoa ja kolmiulotteista avaruutta tutkivaa geometriaa. Euklidisiksi kutsutaan myös useampiulotteisia avaruuksia, joilla on samat ominaisuudet. Euklidinen geometria on nimetty kreikkalaisen matemaatikon Eukleides.

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkImn opqrstuvwxyz01234567890123456789АБВГДЕЁ ЖЗИЙ

 † \ddagger © ${ }^{\text {® }}{ }^{\text {m }} \mu \% \%$ \% 000123456789012345678901234567890

 fl ff ffifj ft tt fb fft fh fk EA KA LA RA TY AЛ AG EA KA y y̆ У̌ y ýy ÿ ỳ ȳ y y a á ă â ä

 ŸY̌Y ŹŽŻ Ď Ľ̌̌AE

BASIC CHARACTERS

ABCDEFGHIJ KLMNOPQRS TUVWXYZ abcdefghij klmnopqrs

 tuvwxyz0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkImnop qrstuvwxyz01234567890123456789АБВГДЕЁЖЗИЙКЛМ

 $0123456789012345678901234567890123456789+-x \div \approx$

 $>=[]^{\wedge}\{ \} \sim 1 《 » \times \div \dagger \ddagger \lll \uparrow \rightarrow \downarrow \kappa \pi \searrow \kappa-\approx \neq \leq \geq()+<>=[] \backslash\{ \} \sim 《 » \neg \pm \times$

[^0]
BASIC CHARACTERS

ABCDEFEHIJ KLMNOPORS TUVWXYZ abcdefghij klmnopqrs

tuvwxyz

 0123456789| | OPENTYPE FEATURES（BASIC） | TT FORS | TT FORS | OPENTYPE FEATURES（DISPLAY） | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | － | 0 | | \bigcirc | 0 |
| TABULAR FIGURES | 1234567890 | 1234567890 | TABULAR FIGURES | 123456 | 123456123456 |
| TABULAR OLDSTYLE | 1234567890 | 1234567890 | PROPORTIONAL FIGURES | 123456 | 123456123456 |
| PROPORTIONAL OLDSTYLE | 1234567890 | 1234567890 | NUMERATORS | H12345 | H^{12345} |
| NUMERATORS | H12345 | H^{12345} | DENOMINATORS | H12345 | H_{12345} |
| DENOMINATORS | H12345 | H_{12345} | SUPERSCRIPTS | H12345 | H^{12345} |
| SUPERSCRIPTS | H12345 | H^{12345} | SUBSCRIPTS | H12345 | H_{12345} |
| SUBSCRIPTS | H12345 | H_{12345} | LIGATURES | ff fi EA KA AЯ | fffi EA KA Ag |
| STANDARD LIGATURES | ff fi | ff fi | SSO1－Alternative y | yýy | yýy |
| DISCRETIONARY LIGATURES | EA KA AЯ | EA KA AG | SSO2－Alternative a | aáă | aáă |
| SSO1－Alternative y | y $y^{\text {y }}$ | y ýy | SS03－Alternative U | Uú ${ }^{\text {dil }}$ | uúu |
| SS02－Alternative a | a ${ }^{\text {áa }}$ | a áă | SSO4－Alternative I | III＇l | lul＇l |
| SS03－Alternative us | UÚ甘 | uút | SS05－Alternative M | Mm | Mm |
| SSO4－Alternative I | IÍl＇！ | líl＇！ | SS06－Alternative Q | QQ | OO |
| SS05－Alternative M | Mm | Mm | SSO7－Round Dots | ĀĊËäce | ȦĊËäco |
| SSO6－Alternative Q | QQ | O－ | SS08－Circled Figures | 0123456789 | （0）（1）（2）（3）（4）（5）（6）（7）（8）（9） |
| SSO7－Round Dots | ÄĊËäċë | ÄĊËäċë | SS09－Negative Circled Figures | 0123456789 | |
| SS08－Circled Figures | 0123456789 | （1）（1）（2）（3）44）（5）（7）（8）（9） | SS10－Slashed Zero | 0000 | 0000 |
| SS09－Negative Circled Figures | 0123456789 | | SS11－Dutch IJ | IJ IJ | IJ لَ |
| SS10－Slashed Zero | 0000 | 0000 | SS12－Catalan Ldot | L－L I－I | LL H |
| SS11－Dutch IJ | IJ ÍJ | IJ ÍJ | SS13－Romanian Comma Accent | ŞşŢ | Ssstut |
| SS12－Catalan Ldot | L．L｜$/$ I | LL H | SS14－Turkish i | i | i |
| SS13－Romanian Comma Accent | ŞşŢ | ȘșTț | SS15－Alternative MW | MWw | MWw |
| SS14－Turkish i | i | i | SS16－Alternative ЖФ
 SS17－Alternative ДЦЩ
 SS18－Alternative Punctuation | ЖФжф
 ДЦЩ $\text { *\#/\\()\{\}[]<>《>+-= }$ | ЖФжф
 ДЦШ
 ＊\＃／\（）\｛\}[]<>《»+-= |

TypeType company was founded in 2013 by Ivan Gladkikh, type designer with a 10 years' experience, and Alexander a type designer with a 10 years' experience, and Alexander
Kudryavtsev, an experienced manager. Over the past 10 Kudryavtsev, an experienced manager. Over the past 10
years we've released more than $75+$ families, and the years we've released more than $75+$ families, and the
company has turned into a type foundry with a dedicated team.

Our mission is to create and distribute only carefully drawn, thoroughly tested, and perfectly optimized typedrawn, thoroughly tested, and perfectly optimized type
faces that are available to a wide range of customers.

Our team brings together people from different countries and continents. This cultural diversity helps us to create truly unique and comprehensive projects.

Copyright © TypeType Foundry 2013-2024.
All rights reserved.
For more information about our fonts,
please visit our website
typetype.org
Most of the texts used in this specimen
are from Wikipedia.

[^0]:

